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Abstract: Digital twins are used to replicate the behaviour of physical systems and in-vehicle networks 1

can greatly benefit from this technology. This is mainly because in-vehicle networks circulate large 2

amounts of data coming from various sources like wired, or in some cases even wireless, sensors that 3

is fused by actuators responsible for safety-critical tasks which require careful testing. In this work 4

we build a laboratory in-vehicle network that mimics a real vehicle network in regards to wire length, 5

number of stubs and devices that are connected to it. The Controller Area Network (CAN), which 6

is still the most popular communication bus inside cars, is used as a network layer. Using models 7

defined in MATLAB for various subsystems, e.g., Anti-lock Braking System (ABS), Powertrain and 8

Electric Power-Steering, deployed on automotive-grade microcontrollers, we evaluate the in-vehicle 9

bus digital twin by providing realistic inputs, recording and reproducing in-vehicle network traffic. 10

The experimental results showed good correlation between the output of the implemented digital 11

twin and the data collected from an actual car. 12

Keywords: CAN bus; Digital Twin; Control Systems; 13

1. Introduction and motivation 14

During the last two decades, vehicles evolved towards software-driven objects, re- 15

quiring a large number of Electronic Control Units (ECUs) that communicate over intricate 16

in-vehicle networks. This evolution is based on the industry’s need to develop new au- 17

tomotive functions, e.g., adaptive cruise control, or to digitize existing functions, e.g., 18

steer-by-wire. As confirmed by recent studies related to automotive trends [1] the near 19

future will bring even more hardware and software updates to reach a new milestone for 20

autonomous and connected cars. Thus, the number of threats and the magnitude of risks 21

will increase as well. This calls for the study of automotive systems that implement specific 22

functions at the vehicle level using simulations [2], models [3] or digital twins [4]. 23

The digital twin concept defines a virtual counterpart realized as a prototype of a real 24

product or process. The idea originates from the Florida Institute of Technology in the 25

early 2000s [5]. The interpretation from the International Council on Systems Engineering 26

(INCOSE) organization defines a digital twin as a high-fidelity model of the system [6]. 27

There can be various levels of digital twins starting from pre-digital twins to adaptive or 28

intelligent digital twins that exchange more or less data with their physical twins or make 29

use of reinforced learning [7]. 30

Initially proposed and used in manufacturing processes [8], recent studies also evaluate 31

the development of digital twins for physical automotive systems. One such study verifies 32

outputs of MATLAB models, i.e., digital twin of a vehicle function, compared to real 33

data extracted from the CAN bus of the Toyota Prius test vehicle in the context of vehicle 34

dynamics [9]. This work integrates several types of vehicle models in MATLAB in order 35

to create the digital twin, i.e., single-track model, two track model, multi-body vehicle 36

model and tire models. In the light of such works, given the trend of using digital twins 37
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Figure 1. Overview of the in-vehicle network that we model in CarTwin

for automotive systems or functions, our goal here is to explore the digital twin of a real 38

vehicle CAN bus. 39

For defining our digital twin, we will use several embedded boards that implement 40

specific models, connected to a Controller Area Network (CAN) bus from a real vehicle as 41

shown in Figure 1. On each embedded board we integrate a specific MATLAB model that 42

receives input signals from the CAN bus and provides outputs that are computed based on 43

those inputs (according to the system model). We analyze the wiring diagram handbook 44

of the real car to determine the ECUs that communicate on the CAN bus and the vehicle 45

functions realized by these ECUs. We give more details regarding the real CAN network 46

in the forthcoming sections. One specific use case of the digital twin is in analyzing the 47

effects of cyberattacks as we argue at the end of the experimental section. From a security 48

standpoint, there are many CAN vulnerabilities shown by research works [10,11] as well as 49

more recent attacks on real vehicles [12]. Thus, designing security countermeasures is a 50

prime demand and a digital twin can be immediately used to test new proposals. 51

The contributions of our work, i.e., CarTwin - the digital twin of a real car, can be 52

summarized as follows: 53

1. we use fine grained details of a real vehicle CAN network, such as wire lengths, 54

stub lengths, the number of nodes communicating on the bus and the real-world 55

information that is sent on the network, 56

2. we use MATLAB models to implement ECU functionalities related to braking (Anti- 57

lock Brake System), seat-belt status and seat position checks for airbag deployment 58

(Restraints Control Module), remote keyless actions (Remote Function Actuator), 59

entertainment and multimedia (Accessory Protocol Interface Module), wheel steering 60

(Power Steering Control Module), engine and transmission controls (Powertrain 61

Control Module) and the information presented to the driver (Instrument Panel 62

Cluster), 63

3. we implement a tool in a high level language that provides signal inputs to the models 64

and records the CAN traffic from the bus making the digital twin easy to use for 65

experimental purposes. 66

The rest of the paper is structured as follows. In the Section 2 we provide details 67

related to CAN bus communication and the related work on digital twins and CAN buses. 68

After that, within Section 3 we detail the characteristics of the real vehicle CAN network 69

that we use as a basis for CarTwin. In Section 4 we detail the MATLAB Simulink models 70

for each of the ECUs that share the CAN network while in Section 5 we give the technical 71

details for implementing the digital twin. Specific measurements from the experimental 72

setup are depicted in Section 6 whilst Section 7 holds the conclusion of our work. 73
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2. Background and related work 74

In this section we discuss some background on CAN buses and related works on 75

digital twins. 76

2.1. Background of the CAN Bus 77

Due to its cost efficiency and reliability under harsh conditions, the Controller Area 78

Network (CAN) has been widely used since the 90s in road vehicles as data distribution 79

interface between Electronic Control Units (ECUs), sensors and actuators. More recently, 80

the CAN specifications were more recently extended by Bosch to support higher payload 81

and data rates as CAN-FD. The CAN protocol and its extension, CAN-FD, have been 82

standardized by ISO (International Organization for Standardization) under the ISO-11898 83

standard [13,14]. A newer generation called CAN-XL which will support even higher 84

payloads and bit-rates that allow tunnelling of Ethernet packets will arrive soon. This 85

proves that the CAN bus will survive in its newer embodiment, CAN-FD or CAN-XL, in 86

future in-vehicle networks. 87

CAN is an asynchronous serial communication protocol that requires information to 88

be transmitted using dominant, i.e., logical ’0’, or recessive , i.e., logical ’1’, bits. A twisted 89

pair of wires denoted as CANH (CAN High) and CANL (CAN Low) with a termination of 90

120Ω on both sides defines the CAN bus physical layer. The physical network supports 91

the connection of multiple nodes that can transmit or receive frames with a pre-defined 92

structure following the specifications defined by the CAN standard included in ISO-11898-1 93

[13]. The CAN nodes communicate on the physical bus using a CAN controller, usually 94

embedded as part of a microcontroller, and a CAN transceiver. The CAN controller has 95

two lines for communicating with the transceiver called TX and RX. The RX line reflects the 96

state of the physical bus converted by the transceiver from a differential voltage between 97

CANH and CANL to a logical state while the TX interface is used by nodes to transmit bits 98

via the CAN transceiver on the physical bus. Each node can start communicating whenever 99

the bus is idle and, if more than one node is trying to transmit data, all transmitters have 100

to follow the arbitration procedure for the CAN bus during which the node sending the 101

frame with the highest priority wins. 102

There are four specific types of frames defined on the CAN bus: data frames used to 103

transfer data, remote frames used to request a data frame, overload frames signalling an 104

overload condition and error frames signalling an error was detected. 105

The CAN data frame is structured in different bit fields which are defined according 106

to the ISO-11898-1 [13] standard. Each frame transmission starts with the SOF (start of 107

frame) bit which is always dominant because the bus state is recessive when the bus is idle. 108

It is followed by the arbitration field which contains the frame identifier, i.e., ID, and will 109

determine the node that wins the arbitration part. The ID is followed by the RTR (remote 110

transmit request) bit which, if recessive, it requests frame transmission from the genuine 111

sender (remote frame) and if dominant it means the data frame is transmitted by the sender 112

(normal frame). The node that wins arbitration continues sending the control field which 113

starts with the IDE bit that is dominant for standard identifiers and recessive for extended 114

identifiers. For standard frames, the control field contains a reserved bit that is always 115

dominant and the number of data bytes carried by the frame followed by the data field 116

with the actual frame content called DLC. After the data field, the CRC field follows and 117

it is used by receivers to check the integrity of the received header and frame data. Then, 118

the ACK field follows which is used by the receivers to confirm the correct reception of the 119

frame by transmitting a dominant bit over the recessive bit sent by the frame transmitter. 120

Both CRC and ACK fields have a bit delimiter, i.e., DEL that is always recessive. The frame 121

ends with an EOF (end of frame) field of 7 recessive bits. The remote frame has a similar 122

structure with the data frame except that it does not transmit data bytes so it has an empty 123

data field. The frame structure for a CAN data frame is depicted in Figure 2. 124
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Figure 2. Overview of the standard CAN frame format

2.2. Related work 125

Since the CAN specification published by Bosch has been standardized there have 126

been may research papers addressing various topics related to it. The first studies were 127

focused on the message scheduling [15,16] and response times due to message arbitration or 128

error frames [17]. They were followed by proposals like TT-CAN [18], CANOpen [19] that 129

address its possible extensions so it can be adopted to other applications or updates to its 130

original specification [20,21] with the goal to improve its communication bandwidth. Due 131

to the increasing need for more data bytes in the message frames and faster communication 132

between nodes, the automotive industry together with Bosch have published a newer 133

version of CAN called CAN-FD (flexible data-rate) [13,14]. This extension proves that CAN 134

is going to remain present in cars in the long run. 135

Practical implementations of digital twins have a few years after the concept was 136

proposed [5], mainly in manufacturing processes as basis for product lifecycle management 137

[8]. Considering that digital twins represent an authentic copy of the real physical object 138

with regards to specific properties, monitoring and diagnosing digital twins would reveal 139

solid information, helpful for monitoring the real physical object behavior under certain 140

conditions or stimuli. Digital twin frameworks and designs have been proposed by research 141

works for a broad area of use-cases such as cyber-physical systems production [22,23], 142

aerospace machining [24], drilling wells for the oil and gas industry [25], Internet of 143

Things with 5G/6G networks [26] or even for healthcare services [27]. Automotive system 144

digital twin proposals have emerged during the last couple of years from simulation of 145

brake systems [28] to battery systems [29] and wiring harnesses [30]. A recent study 146

provides details regarding development and implementation of a digital twin architecture 147

for autonomous driving simulation [31]. Hence, our proposal from this work is a car twin 148

with a real vehicle network defined by the wiring harness and monitored data as a digital 149

twin. 150

From security standpoint, authors from [32] describe and detail industrial control 151

system testbeds, compare and evaluate existing datasets and report which intrusion de- 152

tection systems perform best. Furthermore, recent works propose digital twin designs for 153

evaluating privacy enhancement in automotive [33], prediction of cybersecurity incidents 154

[34], protection of critical infrastructure for intelligent transport systems [35]. Since none of 155

the existing CAN standards propose any security requirements, the CAN bus is exposed 156

to threats so there are numerous research topics and proposals in this area. Thereby, the 157

automotive industry requires vehicle manufacturers to embed rolling counters and message 158

authentication codes inside the data field of the CAN frames that carry safety-critical data 159

according to the AUTOSAR Secure On-board Communication standard [36]. 160

3. Topology of the Real-world in-Vehicle CAN 161

In this section we describe the modules of the real vehicle network and their function- 162

alities, then we give precise measurements for the connections and wiring lengths. 163

3.1. The in-vehicle subsystems 164

The vehicle network used as basis for the digital twin is one of the OBD-accessible 165

CAN networks from the vehicle we analyzed. By checking its Wiring Diagram Handbook, 166
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we found that there are 7 nodes communicating on the CAN network connected to the Data- 167

Link Connector (DLC): the Accessory Protocol Interface Module (APIM), Power Steering 168

Control Module (PSCM), Instrument Panel Cluster (IPC), Remote Function Actuator (RFA), 169

Restraints Control Module (RCM), Anti-lock Brake System (ABS) and Powertrain Control 170

Module (PCM). 171

The Accessory Protocol Interface Module (APIM), also called SYNC module, is an 172

entertainment and multimedia system that allows the driver or passenger to connect the 173

phone to the car for hands-free phone calls, control the music inside the car, perform voice 174

commands. More information regarding the APIM ECU is provided by authors in [37] 175

which detail the supported features for each version of the module. 176

The Power Steering Control Module (PSCM) adjusts the column angle with the use of 177

a motor to provide the wheel steering having as inputs the steering wheel angle, driver 178

torque and road disturbance. Power steering system modules are analyzed by authors in 179

[38] with detailed block diagrams for the controller, feedback loops and simulations for 180

different system configurations. 181

The Instrument Panel Cluster (IPC) receives inputs from other ECUs (directly or via 182

gateways) and provides that information to the driver using gauges or warning lamps 183

(these are simulated on digital screens on newer vehicles). Additional details and more 184

instrument panel cluster functionalities together with a risk assessment on attacks for IPC 185

functionalities is presented by authors in [39]. A similar analysis is presented for in-vehicle 186

Body Control Modules (BCM) in [40]. 187

The Remote Function Actuator (RFA) is a system paired with a remote function receiver 188

which provides information on the vehicle bus related to intelligent key access on cars 189

which have the remote keyless entry (RKE) feature. Most remote keyless access systems are 190

considered vulnerable and prone to attacks since the security of keyless entry and keyless 191

engine start has received little to no interest from the manufacturers in the last decade until 192

it was emphasized as insecure by various research works [41–44]. 193

The Restraints Control Module (RCM) is a passive safety system which checks the 194

seat-belt buckle switch and seat position. In case of a vehicle crash it controls airbag firing 195

and seat-belt pretension. The RCM detects that a vehicle is crashing by using acceleration 196

and pressure information from multiple sensors placed in multiple areas inside the vehicle. 197

Security evaluation of restraint control modules is done by authors in [45] which propose 198

counter-measures and security tests to mitigate analyzed threats and attack paths. 199

The Anti-lock Brake System (ABS) module prevents the vehicle tires from skidding 200

and reacts when the tires lose traction due to heavy braking or if the brakes are not applied 201

but there is ice, snow, sand or gravel on road that causes loss of tire to road friction. 202

Sensors provide individual tire speed to the ABS ECU which commands a hydraulic pump 203

to control the break pressure whenever any of the tires loses grip. Vulnerabilities and 204

proposals for enhancing the security of anti-lock brake systems were analyzed by recent 205

works [46,47]. 206

The Powertrain Control Module (PCM) from vehicles with manual-transmission 207

manages and monitors the engine and transmission functions and controls the injection 208

of fuel in the engine, control of emissions and the gear change using sensor data. Security 209

of powertrain systems from hybrid and electric vehicles is analyzed by authors in recent 210

papers [48,49]. 211

3.2. Wiring schematic and details 212

Considering that modern vehicles can contain even 40 different wiring harnesses with 213

700 connectors and 3000 wires, with a total length of 4km if placed head to head, the wiring 214

topic is a challenging topic for the automotive world with respect to complexity and cost 215

[50]. 216

In our work, we use three wiring harnesses that have multiple connectors from which 217

we preserved 8, i.e., 7 for the ECUs and 1 for the DLC. The wiring network diagram 218

schematic view including the ECUs, the main bus wiring and the connection stubs is shown 219
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Figure 3. Schematic view of the in-vehicle high-speed CAN bus that we use for the digital twin
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Figure 4. Wire and stub lengths for the in-vehicle high-speed CAN bus from vehicle harnesses

in Figure 3. The wire and stub lengths are shown in Figure 4 (i), Figure 4 (ii) and Figure 4 220

(iii) for the CAN bus defined by wiring harnesses #A, #B and #C. 221

The first wiring harness connects three nodes to the CAN bus, i.e., the APIM, PSCM 222

and IPC. It also provides external access to the bus via the DLC connector. The second 223

wiring harness links the RFA and RCM to the bus while the last one connects the ABS and 224

PCM to the network. The total wire length excluding stubs is of 510cm, i.e., from the first to 225

the last ECU. The stubs have various lengths starting from 15cm for the PSCM, 25cm for 226

the ABS, up to 50cm for the IPC and even up to 100cm for the RCM and 120cm for the RFA. 227

Two nodes, APIM and PCM, include the required CAN bus termination resistors of 120Ω. 228

4. System Level Implementation based on Simulink Models 229

In this section we describe the Simulink models which implement the functionalities 230

of the 7 ECUs from our network. Based on these models we have generated the C code 231

which was flashed on the controllers to obtain the corresponding functionalities. 232

4.1. Design and Validation of Models 233

In Figure 5 we show an overview of the system model and the signal flow between the 234

ECUs. In what follows, we discuss the Simulink model for each ECU i.e., PSCM, ABS, PCM, 235

IPC, RCM, APIM and RFA. Additionally in this figure we depict the RestBus simulation 236

tool from which the models acquire their inputs (marked with orange) i.e., direction, brake 237

command, buckle status, steering wheel and door-lock button. A Restbus simulation is 238

generally used to provide the inputs required to validate ECU functionalities 1. The vehicle 239

speed signal (marked with green) is computed by the ABS ECU and used by other ECUs, 240

e.g., PSCM, PCM. 241

1. Power Steering Control Module (PSCM): In Figure 6 we illustrate the implementation 242

of the steering controller which computes the steering command based on the steering 243

wheel angle from driver and the vehicle speed. To implement the steering controller 244

1 https://www.ni.com/ro-ro/innovations/white-papers/12/the-fundamentals-of-restbus-simulation.html

https://www.ni.com/ro-ro/innovations/white-papers/12/the-fundamentals-of-restbus-simulation.html
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Figure 5. Overview of the Simulink model including the seven ECUs
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Figure 6. Simulink model for PSCM ECU

we use the Mapped Steering block from the Simulink library. This block computes 245

the left and right wheel angles based on the steering wheel angle and vehicle speed 246

using interpolation tables. Using the right wheel angle we then compute the vehicle 247

trajectory, i.e., x, y, as shown in Equations 1 and 2 and rotation angle , i.e., ψ, as 248

depicted in Equation 3: 249

x =
∫

cos ψ × v dt (1)

y =
∫

sin ψ × v dt (2)

ψ =
∫

tan (AngR)× v
3

dt (3)

In Equation 3, AngR is the right wheel angle while in Equations 1 to 3, v is the vehicle 250

speed. In the same equation, vehicle speed is divided by 3 in the calculation of ψ 251

because the distance between the axle wheels is considered of 3 meters. 252

2. Anti-lock Brake System (ABS): In Figure 7 (i) we model the estimation of the speed 253

for each wheel based on vehicle speed and brake information (when the brake is 254

pressed the speed of each wheel is decreased using an integral controller). In Figure 7 255

(ii) we depict the calculation of the brake command for the front-left wheel. In Figure 256

7 (iii) we depict the calculation of the vehicle speed after braking using a proportional 257

controller which uses as limit the preset vehicle speed target when the ABS is not 258

braking on any wheel or zero when the ABS is braking on at least one wheel. The ABS 259

ECU computes the slip for each wheel as shown in Equation 4: 260

s =
vx − v

v
(4)

In this equation, s is the slip of a wheel, vx is the speed of the wheel and v is the 261

vehicle speed. The state of the brake command is computed based on the slip of the 262

wheel and vehicle speed, i.e., apply (input valve is open and output valve is closed, 263

the pressure goes to the wheel), hold (wheel is locked, input valve is closed to prevent 264

more pressure to the wheel) and release (the output valve is open, the pressure is 265

released and the wheel can rotate). The state of the brake commands is used to control 266

the valves, i.e., to open or close the valves. The same functionally is implemented on 267

all vehicle wheels. 268

3. Powertrain Control Module (PCM): The PCM implements very complex function- 269

alities in order to ensure the efficiency and stability of the engine. In our model we 270

compute the main functionalities of the PCM, i.e., acceleration, torque, gear, engine 271

speed, engine power, air mass flow, fuel flow, exhaust temperature, efficiency and 272

emission performance. In Figure 8 we depict our implementation of the PCM module. 273
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(i) Estimation of vehicle speed for each wheel

(ii) Calculation of brake command for the front-left wheel

(iii) ABS ECU calculation of vehicle speed after braking

Figure 7. Simulink model for ABS ECU
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Figure 8. Simulink model for PCM ECU

Based on vehicle speed, as outlined in Equation 5, we compute the vehicle acceleration 274

as the derivative of the vehicle speed with respect to time: 275

acc =
dv
dt

(5)

As part of the equation terms, acc is the acceleration, v is the vehicle speed and t 276

represents the time. In order to eliminate the spike of the acceleration value we apply 277

two low pass filters with a filtering coefficient of 0.1. The gear is computed using a 278

interpolation table which has as input the vehicle speed and uses the flat interpolation 279

method to select the corresponding value of the gear. Based on the engine speed and 280

gear we estimate the engine torque using a 2-D lookup table. Using the gear of the 281

vehicle we compute the engine speed as presented in Equation 6: 282

engineSpeed = shaftVS × axleRatio × trRatio (6)

In the equation above, engineSpeed is the engine speed, shaftVS is the shaft vehicle 283

speed, axleRatio is the axle ratio and trRatio is the transmission ratio for each gear. The 284

shaft vehicle speed is computed based on vehicle speed as shown in Equation 7: 285

shaftVS =
v × 25

3 × π × 0.381
(7)

In this case, v is the vehicle speed and 0.381(m) is the considered wheel radius. 286

To compute other powertrain signals we used the Mapped SI Engine block from the 287

Simulink library which implements a spark-ignition engine model based on the torque 288

and engine speed. This model uses several look-up tables to compute the engine air 289

mass flow, normalized engine cylinder air mass, air-fuel ratio (AFR), engine fuel flow, 290

volumetric fuel flow, engine exhaust gas temperature, engine crankshaft absolute 291

angle, engine brake-specific fuel consumption, engine out hydrocarbon emission mass 292

flow, engine out carbon monoxide emission mass flow rate, engine out nitric oxide 293

and nitrogen dioxide emissions mass flow, engine out carbon dioxide emission mass 294

flow, engine out particulate matter emission mass flow, crankshaft power, fuel input 295

power and power loss. 296

4. Instrument Panel Cluster (IPC): The IPC module displays several information for the 297

driver that are received from other ECUs or are internally computed. In our work, the 298

IPC module computes the trip distance, average vehicle speed and the buckle alert. 299
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(i) Calculation of buckle status (ii) Calculation of trip distance

(iii) Calculation of average vehicle speed

Figure 9. Simulink model for IPC ECU

(i) RCM model

(ii) APIM model

Figure 10. Simulink models for RCM and APIM ECUs

In Figure 9 (i) we show the model for the calculation the the buckle status (if the car 300

is moving with more that 10 m/s and the seatbelt is not buckled, the buckle alert is 301

shown to the driver). In Figure 9 (ii) we show the implementation of the trip distance 302

which is computed as the integral of vehicle speed as outlined in Equation 8: 303

dist =
∫

vdt (8)

As equation terms in Equation 8, dist is the trip distance, v is the vehicle speed and t 304

is the time. 305

Due to the fact that the vehicle speed is computed in m/s in our models, in order to 306

have the trip distance in km, we convert it from meter to kilometer and round it to 307

two decimals. In Figure 9 (iii) we depict the calculation on the average vehicle speed. 308

5. Restraints Control Module (RCM): In Figure 10 (i) we show the Simulink model for 309

the calculation of airbag status based on vehicle speed and buckle status (if the car is 310

moving with more that 10 m/s and the seatbelt is buckled, the airbag is active). 311

6. Accessory Protocol Interface Module (APIM): In Figure 10 (ii) we show the Simulink 312

model for the calculation of rear camera status based on direction. If the car is moving 313

in reverse the rear camera is turned on. Otherwise the rear camera is turned off. 314

7. Remote Function Actuator (RFA): In Figure 11 we show the Simulink model for the 315

calculation of door status based on a signal acquired from a button. If the door lock 316

button is continuously pressed and the door is unlocked, after 1s the door status 317

is updated to locked. If the door is locked, the status is updated to unlocked after 318

another second. 319

5. Hardware and Software Level Deployment of the Digital Twin 320

We analyzed open-access CAN databases from opendbc 2 to guide us in choosing 321

appropriate frames and signals for the models and the CAN tool. By verifying the frame 322

content in several database files we have extracted relevant signals for the models we use in 323

2 https://github.com/commaai/opendbc

https://github.com/commaai/opendbc
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Figure 11. Simulink model for RFA ECU

Figure 12. User interface for the transmission and visualization of CAN signals

the digital twin setup. Some of these signals were encoded into 15 bits. We extend them to 324

16 bits in order to use 2 bytes from the data field for easing data manipulation in software. 325

A detailed description of all signals used and their need is be elaborated in what follows 326

next. 327

In order to transmit the input data required by the Simulink models, we have devel- 328

oped a tool in C# which incorporates the XL Driver Library from Vector 3. This library 329

allows CAN frame transmission on the vehicle bus using the Vector hardware device and 330

parses the frame content for all received frames. Using a configurable micro-second level 331

timer, CAN frames are transmitted periodically from the tool using the USB device from 332

Vector with CAN Interface, i.e., VN5610. Our tool allows the user to initialize the communi- 333

cation with the Vector device, select specific values for the CAN signals from combo-boxes 334

(default values are already set at tool startup) which are transmitted on CAN based on the 335

3 https://www.vector.com/int/en/products/products-a-z/libraries-drivers/xl-driver-library/

https://www.vector.com/int/en/products/products-a-z/libraries-drivers/xl-driver-library/
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(i) AURIX TC275 development
kit

(ii) Experimental setup of the vehicle bus network digital twin

Figure 13. Aurix node and experimental setup for CarTwin

mapping of real values to CAN raw data bytes. Transmission can be started or stopped at 336

any time. The signals transmitted from the C# tool together with their bit size are shown 337

in the first part of Table 1 and are as follows: vehicle speed target, vehicle direction to 338

specify if the vehicle is driven straight or in reverse, brake status to command the brake, 339

steering wheel angle to compute the vehicle steering and buckle status for airbag control 340

and audible alert for the driver. The tool allows the user to see real-time CAN frames, i.e., 341

labelled as "Received frames", as well as the relevant signal interpretation, e.g., "Vehicle 342

Speed", "Gear" or "Trip distance". The user interface for the C# based tool is depicted in 343

Figure 12. 344

As models of legitimate ECUs we have employed 7 development boards with software 345

applications that transmit model outputs as signals in CAN frames on the real vehicle bus. 346

The boards are Infineon TC275 lite kits with USB support for the PC. They embed a AURIX 347

TC275 microcontroller together with a TLE9251VSJ CAN Transceiver and include a CAN 348

connector interface with a 120Ω resistor between CANH and CANL. The AURIX TC275 349

controller has three cores running at 200 MHz, 4MB of Flash memory and 472KB of SRAM. 350

Furthermore, according to information from its datasheet, this microcontroller variant is 351

designed to be used in various automotive safety applications such as braking control units, 352

airbag control units, powertrain control units and electric power steering control units. One 353

of the AURIX TC275 lite kits used in our experiments is shown in Figure 13 (i). 354

For transmission and reception of messages from the CAN bus we configured P20.8 355

and P20.7 pin as CAN TX and CAN RX since they are already connected via PCB traces to 356

the existing CAN transceiver on the evaluation kits. We configured P20.6 pin as output 357

with LOW state to enable the normal operation of the CAN transceiver since this pin is 358

connected to the standby input of the transceiver. In order to preserve the required CAN 359

bus impedance we kept the 120Ω resistor only on the boards which are terminal nodes, i.e., 360

the first and the last, and removed the resistors from the other 5 boards. In this way, the 361

CAN bus is terminated with 2 x 120Ω resistors between CANH and CANL. 362

In order to use the CAN network from the vehicle wiring harness, we cut the CAN 363

wires before they original vehicle connectors and soldered 2.54mm headers on them. The 364

headers were connected to the 2.54mm male connectors which were available on each 365

development board as CAN bus connector. The experimental setup that contains the 366

in-vehicle ECU models and the VN5610A connected to the wiring harness is shown in 367

Figure 13 (ii). 368

We now describe the software deployment for creating the digital twin on the automotive-369

grade controllers. For generating the Simulink models as C code we used the Simulink 370
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Embedded Coder feature from MATLAB 4. This feature allows generation of C and C++ 371

code using specific tool settings which we detail as follows. The settings we configured for 372

each model are: (1) fixed step solver type with discrete states so we could configure the 373

step time according to the task execution time on the embedded device, (2) step size was 374

set to 20 milliseconds since the task cycle time configured in the AURIX software is of 20ms 375

and (3) device vendor was set to "Infineon" and device type set to "TriCore" so the variable 376

types and endianess are generated as C code according to the hardware target capabilities. 377

We had to perform one more step in Simulink for each model before we could generate 378

and integrate the code on the embedded hardware target. Where there were any continuous- 379

time blocks we had to replace them with discrete-time blocks with the same functionality, 380

e.g., continuous integrator blocks with discrete integrator blocks that use the configured 381

step time. 382

Table 1. Summary of signals transmitted by CAN bus nodes

CAN Signal CAN ID Transmitter Data size (bits)

Vehicle speed target 0x7FA CAN tool 16
Vehicle direction 0x7FB CAN tool 2

Brake status 0x7FB CAN tool 1
Steering wheel angle 0x7FD CAN tool 16

Buckle status 0x7FE CAN tool 1
Engine speed 0x11 PCM 32

Gear 0x13 PCM 4
Vehicle speed 0x24 ABS 32

Vehicle steering offset 0x30 PSCM 32
Vehicle position X 0x31 PSCM 32
Vehicle position Y 0x31 PSCM 32

Airbag status 0x40 RCM 1
Vehicle average speed 0x21 IPC 32

Trip distance 0x21 IPC 32
Buckle alert 0x22 IPC 1

Door lock status 0x40 RFA 1
Rear camera video status 0x12 APIM 1

After the model was generated as C code we integrated it in the embedded project 383

from AURIX studio that we configured for the Infineon AURIX TC275 microcontroller. As 384

model execution steps inside the software project we start with the initialization functions, 385

i.e., in order to initialize the local variables and data structures according to the model 386

settings. Then, we execute the model step function every 20 milliseconds to consume the 387

input data received from CAN bus, i.e., from the tool or from other models. After executing 388

the step function, the outputs from the model are transmitted as CAN bus signals that 389

can be split into multiple CAN frames depending on the content. The ABS twin computes 390

the valve status and slip for each wheel (front left, front right, rear left, rear right) and 391

transmits the calculated vehicle speed on CAN based on the braking status information. 392

The powertrain twin computes the vehicle acceleration, engine torque, etc., and transmits 393

the engine speed and gear position on the bus. The power-steering twin computes and 394

provides the steering offset of the vehicle considering the steering wheel angle value and 395

also sends the X and Y position relative to the vehicle starting point. The restraint control 396

module provides the airbag status taking into account the buckle status received from 397

the vehicle bus. The instrument panel cluster provides as outputs on the CAN bus the 398

average vehicle speed and trip distance based on the received vehicle speed values and the 399

buckle alert using the buckle status from the CAN tool frame. The remote function actuator 400

modifies and transmits the door lock status taking into account if the door lock button 401

is pressed using a debounce time of 1 second. The accessory protocol interface module 402

4 https://www.mathworks.com/help/ecoder/

https://www.mathworks.com/help/ecoder/
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(i) Vehicle speed computed in our models (ii) Vehicle speed collected from the car

(iii) Engine speed computed in our models (iv) Engine speed collected from the car

(v) Trip distance computed in our models (vi) Trip distance based on odometer value collected from the car

Figure 14. Signals computed by CarTwin models (left) and signals collected from a car (right)

will activate the rear-view camera if the vehicle is driven backwards and will constantly 403

provide the rear-camera video status on the vehicle bus. CAN output signal information 404

that includes bit size transmitted by each ECU model from the CarTwin setup is shown in 405

the second part of Table 1 while the first part of the table details the signals transmitted 406

from the C# tool. 407

6. Experimental evaluation of the digital twin 408

In the first part of this section we provide details related to the Matlab/Simulink 409

model integration in the CarTwin experimental setup and compare data extracted from 410

a real-world vehicle trace with the output from our CarTwin models. Then, we discuss 411

possible applications and future improvements for CarTwin. Finally, we compare CarTwin 412

with related approaches for digital twins in the automotive domain. 413

First of all, in order to verify the correctness of the ECU model integration on the CAN 414

bus, we provided the same input signals to each of the models in Matlab/Simulink and 415

from the CarTwin setup using the C# tool, logged the outputs from the experiments and 416

verified that the output value arrays are the same in Matlab/Simulink and on the CAN bus. 417

For evaluation purposes, the signals of interest that we analyzed from the vehicle trace and 418

the CarTwin model are: (a) vehicle speed, (b) engine speed and (c) trip distance. 419

6.1. Results 420

In order to correlate the model outputs with the real-world vehicle data we estimated 421

the brake signal based on vehicle speed variations from the real-world vehicle trace and 422

used it as input in the CarTwin model. The vehicle direction input was always transmitted 423

as straight, i.e., vehicle is always moving forward. The target vehicle speed, that is also the 424

initial vehicle speed in the model, is of 140 km/h. While the brake is not active, the vehicle 425

speed will increase up to the target vehicle speed. Next, we show one trial of collected 426

vehicle data compared to CarTwin model output. The model output signals are shown 427
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(i) Vehicle speed computed in our models (ii) Vehicle speed collected from the car

(iii) Engine speed computed in our models (iv) Engine speed collected from the car

(v) Trip distance computed in our models
(vi) Trip distance based on odometer value collected from the car

Figure 15. Signals computed by CarTwin models (left) and signals collected from a car (right) on local
roads

in Figure 14 (i), Figure 14 (iii) and Figure 14 (v). while the real-world vehicle signals are 428

shown in Figure 14 (ii), Figure 14 (iv) and Figure 14 (vi). 429

The real-world vehicle trace contains a normal drive scenario on local roads and on the 430

highway with a total duration of 44 minutes. There are two frames in the trace that we used 431

to extract the vehicle speed, engine speed and odometer value. Vehicle speed and engine 432

speed are transmitted every 10ms while the odometer is sent every 1s. In the CarTwin 433

model we directly compute the trip distance based on vehicle speed, while in the vehicle 434

trace we use the odometer value. In order to correlate the model output with the vehicle 435

trace, we subtract in the latter the initial odometer value from the trace. From the vehicle 436

trace we extracted more than ∼250k samples for the vehicle speed and engine speed as 437

shown in Figure 14 (ii) and Figure 14 (iv) and more than ∼2.5k samples for the vehicle trip 438

distance based on the odometer value as shown in Figure 14 (vi). Considering the vehicle 439

speed and engine speed changes between local road and highway driving locations and 440

conditions, we emphasize the CarTwin behavior under similar conditions in what follows. 441

In the collected trace, the vehicle speed varies between 0 km/h and 60 km/h during the 442

first ∼100k samples and is approximately 130km/h for the next ∼150k samples, while the 443

vehicle is on the highway as shown in Figure 14 (ii). The engine speed, depicted in Figure 444

14 (iv), varies with the vehicle speed between 1000 rpm and 4500 rpm at lower vehicle 445

speeds and stays close to 3000 rpm while the vehicle speed increased, in the second part of 446

the trace. In Figure 14 (vi), it can be seen that the trip distance value has a slow increase in 447

the first part of the trace and, after that, it grows linearly due to the fact that the vehicle 448

speed is quite stable around 130 km/h. To compare CarTwin outputs with the vehicle trace 449

signals in a more concise way, we split the entire trace from Figure 14 in two parts based on 450
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(i) Vehicle speed computed in our models (ii) Vehicle speed collected from the car

(iii) Engine speed computed in our models (iv) Engine speed collected from the car

(v) Trip distance computed in our models
(vi) Trip distance based on odometer value collected from the car

Figure 16. Signals computed by CarTwin models (left) and signals collected from a car (right) on
highway

the driving location. In the first part as illustrated in Figure 15 the vehicle is driven on local 451

roads and in the second part as shown in Figure 16 it is driven on a highway. 452

Local roads. In Figure 15 we show the signals while the vehicle is driven in the city 453

and on local roads. The plots from the left side are the outputs from our simulation, i.e., 454

Figure 15 (i), Figure 15 (iii), Figure 15 (v) while the plots from the right side are the signals 455

collected from the real car, i.e., Figure 15 (ii), Figure 15 (iv) and Figure 15 (vi). For the 456

vehicle speed signal, the model output varies between 0 km/h and 85 km/h while the 457

vehicle speed signal collected from the vehicle varies between 0 km/h to 80 km/h (with 458

the exception of one spike to 120 km/h during a car overtake in the real scenario). Engine 459

speed varies between 800 rpm and 2500 rpm in the model output while in the vehicle trace 460

the signal value is of 900 rpm to 2500 rpm (except for a few spikes at 4500 rpm). We have a 461

different number of samples for the trip distance (between our simulation and the signal 462

collected from the car) because our model runs at 20ms while the car CAN bus message 463

that contains the odometer is transmitted every 1 second. However, the trip distance signal 464

has a similar variation over time. 465

Highway. In Figure 16 we show the signals while the vehicle is driven on a highway. 466

Again, the plots from the left side are the outputs from our simulation, i.e., Figure 16 (i), 467

Figure 16 (iii), Figure 16 (v) while the plots from the right side are the signals collected from 468

the real car, i.e., Figure 16 (ii), Figure 16 (iv) and Figure 16 (vi). For the vehicle speed signal, 469

the model output varies between 90 km/h and 135 km/h while the vehicle speed signal 470

collected from the vehicle varies between 125 km/h to 148 km/h (with the exception of 471

a few spikes to 80 km/h at the beginning of the plot). Engine speed varies between 2600 472

rpm and 3700 rpm in the model output while in the vehicle trace the signal value is more 473

stable between 2600 rpm and 3400 rpm (except for a few spikes at the beginning of the plot 474
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between 1000 rpm and 4600 rpm). The trip distance signal from the model and the trip 475

distance signal from the car have a similar variation in time. 476

Statistical comparison. As an additional metric for the accuracy of the model outputs, 477

we compute the mean values for the differences between the output signals of the model 478

and those from the vehicle trace and the correlation coefficient between these signals. To 479

provide a comprehensive evaluation for the computed mean difference, we show several 480

plots with the distribution of vehicle speed and engine speed signals from the model output, 481

vehicle trace and the difference between them. The distribution of the vehicle speed from 482

the model is shown in Figure 17 (i) with more than 20% of values in each of the following 483

ranges: 0–20 km/h, 100–120 km/h and 120–140 km/h. The distribution of the engine speed 484

from the model is shown in Figure 17 (ii) with 30% of the values in the 3240–3780 rpm 485

range and more than 20% of the values in the 540–1080 rpm and 2700–3240 rpm ranges. 486

The vehicle speed from the vehicle trace has more than 30% of the values in the 132–154 487

km/h range while driving on the highway, and around 25% of values in the 44–66 km/h 488

range while driving on local roads, as shown in Figure 17 (iii). The engine speed was in 489

the 2800–3500 rpm range for more than 40% of occurrences in the vehicle trace and around 490

25% within the 1400–2100 rpm range as illustrated in Figure 17 (iv). The distribution for 491

the vehicle speed difference is shown in Figure 17 (v) with 46% of values in the 0–20 km/h 492

range and 80% of values in the 0–40 km/h range while the distribution for the engine speed 493

difference is shown in Figure 17 (vi) with 60% of values in the 0–560 rpm range and 83% of 494

values in the 0–1120 rpm range. Numerical data, which contains the bin width and the bin 495

percentages for each of the 7 bins from the distributions, is presented in Table 2. 496

The distributions, mean difference and correlation coefficient values were computed 497

for the entire trace, which includes both driving on the local road and the highway, and are 498

shown in Table 3. Since the digital twin model is designed by us in MATLAB/Simulink, 499

while the real-world vehicle is an actual physical system that is influenced by the environ- 500

ment, differences between the results are expected (both the vehicle and the environment 501

are nearly impossible to model with absolute accuracy). The mean of the recorded differ- 502

ences is about 25 km/h for the vehicle speed and 610 rpm for the engine speed. We note 503

that the range of the signals is computed according to the collected dataset and the only 504

common input which links the synthetic model with the physical is the signal applied to 505

the brakes. The correlation coefficients between the synthetic data and the real-world data 506

are 0.85 and 0.71 respectively (for the vehicle and engine speed), which show a good to 507

strong relation between the synthetic and the real-world result. 508

Table 2. Statistical data for distribution of model output, real vehicle signal and their difference them

Signal Bin Width Bin Percentages [bins 1 to 7]

Vehicle speed (model) 20 [km/h] 27, 15, 5, 2, 2, 26, 23 [%]
Engine speed (model) 540 [rpm] 4, 20, 15, 7, 3, 21, 30 [%]
Vehicle speed (trace) 22 [km/h] 7, 9, 25, 7, 9, 9, 34 [%]
Engine speed (trace) 700 [rpm] 0, 12, 25, 19, 43, 1, 0 [%]

Vehicle speed (difference) 20 [km/h] 46, 34, 15, 4, 1, 0, 0 [%]
Engine speed (difference) 560 [rpm] 60, 23, 13, 3, 1, 0, 0 [%]

Table 3. Statistical comparison of the synthetic model outputs with the real vehicle signals

Signal Range Mean Difference Correlation
coefficient

Vehicle speed 0–148 [km/h] 25.08 0.85
Engine speed 0–4597 [rpm] 610.01 0.71

6.2. Possible applications 509
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(i) Distribution of vehicle speed values from model (ii) Distribution of engine speed values from model

(iii) Distribution of vehicle speed values from vehicle trace (iv) Distribution of engine speed values from vehicle trace

(v) Distribution of vehicle speed differences (vi) Distribution of engine speed differences

Figure 17. Distribution of values from model output, vehicle trace and differences between them for
vehicle speed (left) and engine speed (right)

A possible application for the experimental model is in the evaluation of cyberattacks 510

on in-vehicle networks. Indeed, many related works on intrusion detection for in-vehicle 511

buses, use real-world traces collected inside the vehicle which are augmented with attacks 512

in an off-line manner, e.g., [51], [52], [53]. One of the most common attacks in such works 513

are fuzzing attacks in which frames containing random data are sent on the bus [54], [55], 514

[56]. Clearly, exposing the actual car to such an attack may cause safety concerns since 515

random packets may cause unexpected behavior for the car. A reason for which, the off-line 516

attack procedure is a good choice. However, this off-line attack procedure overlooks the 517

impact of one parameter on another. As we show in Figure 18 (i) and Figure 18 (iii) when 518

the vehicle speed and engine speed are subject to an off-line attack augmentation, the attack 519

values will show as spikes on the original signals. These spikes on the vehicle speed and 520

engine speed are however poorly correlated which is not necessarily the case in a real 521

vehicle. Obviously, in reality, there is good correlation between these two signals and thus 522

the off-line attacks may be quite artificial. This is visible in Table 4, where the correlation 523

between the two attacked signals is 0, which is expected as the attack values are random, 524

while in the real-world data as well as in the CarTwin experimental model, the correlation 525

between legitimate frames for the same signals is around 0.9. The lack of correlation 526

between these two signals (vehicle speed and engine speed) will make such attacks easier 527

to detect but also not very realistic for the real-world behavior of the car. In Figure 18 (ii) 528

and Figure 18 (iv) we show how an attack on the vehicle speed will influence engine speed 529

when the CarTwin model is employed. The correlation is significantly better for the attacks 530

on the CarTwin model as can be seen in Table 4. Even in case of the attack frames on vehicle 531

speed and their impact on engine speed, the correlation coefficient is still 0.49 (note that in 532

the off-line generated trace the correlation is 0). There is a decreased correlation with an 533

increase in the attack probability which is expected (as the attack becomes more frequent, 534

the correlation lowers since the attack represents an anomaly). While it is out of scope 535
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(i) Vehicle speed collected from the car (ii) Vehicle speed computed in our models

(iii) Engine speed collected from the car (iv) Engine speed computed in our models

Figure 18. Vehicle speed and engine speed under a fuzzing attack with 25% probability in an off-line
augmented trace (left) and the same signals within the CarTwin models (right)

for us to delve further into security related details, this suggests CarTwin to be useful in 536

gaining insights into cyberattacks. 537

Another possible area of investigation for the model is safety and fault tolerance. 538

Our model does contain safety-relevant signals, such as brake, buckle and airbag status 539

signals, etc. Fault tolerance is indeed highly recommended or even mandatory in case 540

of safety critical signals. A well-known and employed solution to assure fault-tolerance 541

is redundancy, either by using different sources for a signal or deriving it by distinct 542

computations. The case in which these signals are faulty, redundancy is a means to correct 543

such faults. For example, vehicle speed is reported both by the ABS and PCM controllers, 544

both of which are present in our model, etc. Such consistency checks can be also done 545

based on the data from the model. 546

Table 4. Attack correlation augmented trace vs. CarTwin

Correlation coefficients

Experiment no attack
frames

attack at
p = 0.1

attack at
p = 0.25

attack at
p = 0.5

attack at
p = 0.75

attack
only

Generic trace 0.88 0.70 0.57 0.43 0.35 0.00
CarTwin 0.93 0.83 0.72 0.61 0.56 0.49

6.3. Comparison to related works 547

The design of digital twins for cars is only a recently emerged topic and there is only a 548

very limited number of related works which can be immediately compared with the devel- 549

opments from our work. As already stated in the introduction, an implementation of digital 550

twins for vehicle dynamics using the steering system, braking system and powertrain is 551

done by authors in [9]. Our work improves on this with the use of a real-world vehicle 552

bus topology, besides the definition and implementation of control system models on the 553

ECUs. A research team from Toyota has designed PASTA (Portable Automotive Security 554

Testbed with Adaptability) [57], an adaptable vehicle cybersecurity testbed as an evaluation 555

environment for automotive attacks. Their testbed integrates development boards with 556

models for various ECUs functionalities from real-world vehicles which communicate 557

on two separate CAN networks connected through a Gateway unit. One recent work, 558

RAMN (Resistant Automotive Miniature Network) [58], designs a small and inexpensive 559

automotive testbed that includes implementation of models for the gateway, powertrain, 560
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chassis and body ECUs connected to a single CAN bus. A comparison of our work with 561

research papers that address vehicle level functions using digital twins is shown in Table 5. 562

Table 5. Comparison of research papers addressing Digital Twins for ECUs or automotive testbeds

Research paper ECUs Simulink Models
Real-world vehicle

bus wiring and
topology

PASTA [57] 4 - -
RAMN [58] 4 - -

Toyota Prius Digital Twin [9] 3 ✓ -
CarTwin (this work) 7 ✓ ✓

7. Conclusion 563

Vehicle functionalities require rigorous models and realistic experimental frameworks 564

for comprehensive design and testing. Digital twins can greatly serve this purpose. Still, 565

creating a digital twin for a car is challenging as it requires not only the models for each 566

functionality but also the networking layer. In this work we constructed a CAN bus 567

experimental setup for creating the digital twin of a car using a real-world vehicle wiring 568

harness. On the experimental setup, we integrated ECU functionalities on automotive- 569

grade microcontrollers using code generated from the Simulink models that we designed, 570

e.g., related to transmission or braking. We also defined the scenario parameters and 571

analyzed the run-time outputs of all models that interact on the CAN Bus. All models 572

receive vehicle data inputs from a software interface, connected to a CAN interface, that 573

reproduces the signals required by the CarTwin models. In the end, we compared several 574

output signals of the CarTwin model with signals collected from a real-world vehicle 575

while driving it on local roads and on the highway. The analysis shows that there is good 576

correlation between the output from our models and the data extracted from the real car 577

that we used as a reference. 578
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